Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.
نویسندگان
چکیده
OBJECTIVE Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. METHODS AND RESULTS Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. CONCLUSIONS Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.
منابع مشابه
Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages.
OBJECTIVE To investigate whether exposure of human monocytes/macrophages to tobacco smoke induces their release of membrane microvesicles (MVs) that carry tissue factor (TF) released from cells, whether smoke-induced MVs are procoagulant, and what cellular processes might be responsible for their production. METHODS AND RESULTS We found that exposure of human THP-1 monocytes and primary human...
متن کاملTissue Factor Prothrombotic Activity Is Regulated by Integrin-arf6 Trafficking.
OBJECTIVE Coagulation initiation by tissue factor (TF) is regulated by cellular inhibitors, cell surface availability of procoagulant phosphatidylserine, and thiol-disulfide exchange. How these mechanisms contribute to keeping TF in a noncoagulant state and to generating prothrombotic TF remain incompletely understood. APPROACH AND RESULTS Here, we study the activation of TF in primary macrop...
متن کاملEffect of P-selectin on phosphatidylserine exposure and surface-dependent thrombin generation on monocytes.
OBJECTIVE Stimulation of monocytes with P-selectin induces the synthesis of an array of mediators of inflammation, as well as the expression of tissue factor (TF), the main initiator of coagulation. Because the membrane-bound reactions of coagulation are profoundly influenced by the presence of phosphatidylserine on the membranes of cells, factors that increase its expression may have an impact...
متن کاملLactadherin and clearance of platelet-derived microvesicles.
The transbilayer movement of phosphatidylserine from the inner to the outer leaflet of the membrane bilayer during platelet activation is associated with the release of procoagulant phosphatidylserine-rich small membrane vesicles called platelet-derived microvesicles. We tested the effect of lactadherin, which promotes the phagocytosis of phosphatidylserine-expressing lymphocytes and red blood ...
متن کاملMicrovesicle Involvement in Shiga Toxin-Associated Infection
Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2007